Latest Chemistry News

Monday, October 21, 2013 - 13:54

When it comes to designing extremely water-repellent surfaces, shape and size matter. That's the finding of a group of scientists at the U.S. Department of Energy's Brookhaven National Laboratory, who investigated the effects of differently shaped, nanoscale textures on a material's ability to force water droplets to roll off without wetting its surface. These findings and the methods used to fabricate such materials—published online October 21, 2013, in Advanced Materials—are highly relevant for a broad range of applications where water-resistance is important, including power generation and transportation.

 

Friday, October 18, 2013 - 14:18

Carbyne will be the strongest of a new class of microscopic materials if and when anyone can make it in bulk. If they do, they’ll find carbyne nanorods or nanoropes have a host of remarkable and useful properties, as described in a new paper by Rice University theoretical physicist Boris Yakobson and his group. The paper appears this week in the American Chemical Society journal ACS Nano.

 

Tuesday, October 8, 2013 - 13:05

Blowing bubbles in the backyard is one thing and quite another when searching for oil. That distinction is at the root of new research by Rice University scientists who describe in greater detail than ever precisely how those bubbles form, evolve and act.

 

Tuesday, October 8, 2013 - 10:07

Antibody-drug conjugates, as they’re called, are the basis of new therapies on the market that use the target-recognizing ability of antibodies to deliver drug payloads to specific cell types—for example, to deliver toxic chemotherapy drugs to cancer cells while sparing most healthy cells. The new technique allows drug developers to forge more stable conjugates than are possible with current methods.

 

Tuesday, October 8, 2013 - 09:41

In new research conducted at Arizona State University’s Biodesign Institute, Jonathan Badalamenti, César Torres and Rosa Krajmalnik-Brown explore the relationships of two important bacterial forms, demonstrating their ability to produce electricity by coordinating their metabolic activities.

 

Friday, October 4, 2013 - 10:23

In future, it could be easier to break down wood, as a source of raw materials, into its constituent parts. Chemists at the Max Planck Institut für Kohlenforschung in Mülheim an der Ruhr have found an efficient way of making the components of the biopolymer lignin easier to use. Lignin stabilises plant cells and contains organic compounds, which are valuable to the chemicals industry for the production of biofuels, for example. The compounds in lignin are, however, difficult to access. The chemists in Mülheim can now chemically convert these building blocks so that they are more readily available.