Latest Chemistry News

Tuesday, April 2, 2013 - 12:52

Gelatin sets by forming a solid matrix full of random, liquid-filled pores — much like a saturated sponge. It turns out that a similar process also happens in some metallic glasses, substances whose molecular behavior has now been clarified by new MIT research detailing the “setting” of these metal alloys.

 

Saturday, March 23, 2013 - 10:41

Researchers at Brown and Yale have demonstrated a new “enabling technology” that could use excess carbon dioxide to produce acrylate, a valuable commodity chemical involved in the manufacture of everything from polyester cloth to disposable diapers.

 

Monday, March 11, 2013 - 10:08

For years, researchers have developed thin films of bismuth telluride (Bi2Te3) – which converts heat into electricity or electricity to cooling – on top of gallium arsenide (GaAs) to create cooling devices for electronics. But while they knew it could be done, it was not clear how – because the atomic structures of those unlikely pair of materials do not appear to be compatible. Now researchers from North Carolina State University and RTI International have solved the mystery, opening the door to new research in the field.

 

Friday, March 8, 2013 - 13:08

The first experimental observation of a quantum mechanical phenomenon that was predicted nearly 70 years ago holds important implications for the future of graphene-based electronic devices. Working with microscopic artificial atomic nuclei fabricated on graphene, a collaboration of researchers led by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have imaged the “atomic collapse” states theorized to occur around super-large atomic nuclei.

 

Tuesday, February 19, 2013 - 14:46

Understanding exactly how droplets and bubbles stick to surfaces — everything from dew on blades of grass to the water droplets that form on condensing coils after steam drives a turbine in a power plant — is a “100-year-old problem” that has eluded experimental answers, says MIT’s Kripa Varanasi. Furthermore, it’s a question with implications for everything from how to improve power-plant efficiency to how to reduce fogging on windshields.

 

Monday, February 18, 2013 - 09:53

Making new insights into the nanoworld a reality! An international team working with scientists from the University of Stuttgart and the Max Planck Institute for Solid State Research in Stuttgart have put the conditions in place to examine proteins and other nanostructures with the help of nuclear spin spectroscopy. This is a method that reveals the structure of a material, however, on nanoscopic samples it previously involved enormous technical complexity.