Energy News

Monday, October 28, 2013 - 13:14

In the early morning hours of Oct. 18, NASA’s Lunar Laser Communication Demonstration (LLCD) made history, transmitting data from lunar orbit to Earth at a rate of 622 Megabits-per-second (Mbps). That download rate is more than six times faster than previous state-of-the-art radio systems flown to the moon.

 

Friday, October 25, 2013 - 09:21

A team headed by scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg have demonstrated that it also meets an important condition for use in novel lasers for terahertz pulses with long wavelengths. The direct emission of terahertz radiation would be useful in science, but no laser has yet been developed which can provide it. Theoretical studies have previously suggested that it could be possible with graphene. However, there were well-founded doubts - which the team in Hamburg has now dispelled. At the same time, the scientists discovered that the scope of application for graphene has its limitations though: in further measurements, they showed that the material cannot be used for efficient light harvesting in solar cells.

 

Tuesday, October 22, 2013 - 09:18

A new study set out to use numerical simulations to validate previous theoretical predictions describing materials exhibiting so-called antiferromagneting characteristics. A recently discovered theory shows that the ordering temperature depends on two factors—namely the spin-wave velocity and the staggered magnetisation. The results, largely consistent with these theoretical predictions, have now been published in a paper in EPJ B by Ming-Tso Kao and Fu-Jiun Jiang from the National Taiwan Normal University, in Taipei.

 

Tuesday, October 8, 2013 - 09:41

In new research conducted at Arizona State University’s Biodesign Institute, Jonathan Badalamenti, César Torres and Rosa Krajmalnik-Brown explore the relationships of two important bacterial forms, demonstrating their ability to produce electricity by coordinating their metabolic activities.

 

Friday, September 6, 2013 - 08:46

North Carolina State University researchers have come up with a new technique for improving the connections between stacked solar cells, which should improve the overall efficiency of solar energy devices and reduce the cost of solar energy production. The new connections can allow these cells to operate at solar concentrations of 70,000 suns worth of energy without losing much voltage as “wasted energy” or heat.

 

Thursday, September 5, 2013 - 09:48

A study of the photovoltaic industries in the US and China shows that China's dominance in solar panel manufacturing is not driven solely by cheaper labour and government support, but by larger-scale manufacturing and resulting supply-chain benefits.