Energy

04/16/2014 - 08:35

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects — specifically, the lack of cooling for the reactor cores, due to a shutdown of all power at the station — that caused most of the harm.

 

04/13/2014 - 12:00

A new study using a photosensitive molecule, azobenzene and carbon nanotubes demonstrates the feasibility of developing solar thermal fuels with significantly increased energy storage capacity.

 

04/07/2014 - 10:23

New research from North Carolina State University and UNC-Chapel Hill reveals that energy is transferred more efficiently inside of complex, three-dimensional organic solar cells when the donor molecules align face-on, rather than edge-on, relative to the acceptor. This finding may aid in the design and manufacture of more efficient and economically viable organic solar cell technology.

 

04/03/2014 - 11:58

The electrochemical reactions inside the porous electrodes of batteries and fuel cells have been described by theorists, but never measured directly. Now, a team at MIT has figured out a way to measure the fundamental charge transfer rate — finding some significant surprises.

 

03/27/2014 - 08:49

Researchers at the Georgia Institute of Technology and the Joint BioEnergy Institute have engineered a bacterium to synthesize pinene, a hydrocarbon produced by trees that could potentially replace high-energy fuels, such as JP-10, in missiles and other aerospace applications. With improvements in process efficiency, the biofuel could supplement limited supplies of petroleum-based JP-10, and might also facilitate development of a new generation of more powerful engines.

 

03/11/2014 - 07:22

Osmosis, a vital biological process, is finding its way to the clean and renewable energy technology. Researchers at the Chemical and Biomolecular Engineering Department at the National University of Singapore and at the Water Desalination & Reuse Center at King Abdullah University of Science and Technology fabricated polyethersulfone (PES) thin film composite membranes with hollow fiber supports in order to achieve a membrane with high mechanical strength and high flux—a membrane specifically designed to optimally procure the osmotic energy generated by seawater brine.