Neuroscience

08/28/2014 - 11:00

Until the last few decades, the frontal lobes of the brain were shrouded in mystery and erroneously thought of as nonessential for normal function—hence the frequent use of lobotomies in the early 20th century to treat psychiatric disorders. Now a review publishing August 28 in the Cell Press journal Neuron highlights groundbreaking studies of patients with brain damage that reveal how distinct areas of the frontal lobes are critical for a person’s ability to learn, multitask, control their emotions, socialize, and make real-life decisions. The findings have helped experts rehabilitate patients experiencing damage to this region of the brain.

 

08/28/2014 - 08:24

Scientists at The Scripps Research Institute (TSRI) have solved the mystery of why a specific signaling pathway can be associated with alcohol dependence. This signaling pathway is regulated by a gene, called neurofibromatosis type 1 (Nf1), which TSRI scientists found is linked with excessive drinking in mice. The new research shows Nf1 regulates gamma-aminobutyric acid (GABA), a neurotransmitter that lowers anxiety and increases feelings of relaxation.

 

08/22/2014 - 09:34

Howard Hughes Medical Institute (HHMI) scientists have developed a strategy for finding disease-causing mutations that lurk in only a small fraction of the body's cells. Such mutations can cause significant problems, but cannot be detected with traditional methods of genetic testing, as well as newer, more costly genome sequencing technologies.

 

08/18/2014 - 14:08

Schizophrenia is among the most severe forms of mental illness, yet some people with the disease are as happy as those in good physical and mental health according to a study led by researchers at the University of California, San Diego School of Medicine.

 

08/11/2014 - 08:37

While neurons normally fail to regenerate after spinal cord injuries, neurons formed from human induced pluripotent stem cells (iPSCs) that were grafted into rats with such injuries displayed remarkable growth throughout the length of the animals’ central nervous system. What’s more, the iPSCs were derived from skin cells taken from an 86-year-old man. The results, described in the Cell Press journal Neuron, could open up new possibilities in stimulating neuron growth in humans with spinal cord injuries.

 

08/04/2014 - 12:00

Researchers have uncovered one of the basic processes that may help to explain why some people’s thinking skills decline in old age. Age-related declines in intelligence are strongly related to declines on a very simple task of visual perception speed, the researchers report in the Cell Press journal Current Biology on August 4.