biochemistry

03/17/2014 - 12:36

Small protein fragments, also called peptides, are promising as drugs because they can be designed for very specific functions inside living cells. Insulin and the HIV drug Fuzeon are some of the earliest successful examples, and peptide drugs are expected to become a $25 billion market by 2018.

 

03/14/2014 - 08:55

Chemists at The Scripps Research Institute (TSRI) have devised a greatly improved technique for making amino acids not found in nature. These “unnatural” amino acids traditionally have been very difficult to synthesize, but are sought after by the pharmaceutical industry for their potential medical uses.

 

03/07/2014 - 11:50

Colleagues in Europe and America have solved the mystery of how one of the most important chaperone proteins in our cells, Hsp90, selects its client proteins. Hsp90 plays a role in nearly all processes in our cells, as well as in the origin of diseases such as Alzheimer disease, cancer and cystic fibrosis. Insight into the binding process of Hsp90 will increase our understanding of the origin of these diseases, thereby opening new avenues to prevent or cure them. The results of the research were published in Cell.

 

03/05/2014 - 07:26

Scientists at The Scripps Research Institute (TSRI) have invented small-molecule folding probes that enable them to quantify functional, normally folded and disease-associated misfolded conformations (shapes) of a protein-of-interest in cells under different conditions.

 

02/10/2014 - 13:39

A team led by scientists at The Scripps Research Institute (TSRI) has discovered an unusual bacterial protein that attaches to virtually any antibody and prevents it from binding to its target. Protein M, as it is called, probably helps some bacteria evade the immune response and establish long-term infections.

 

02/07/2014 - 10:30

A team of researchers led by Virginia Tech and University of California, Berkeley, scientists has discovered that a regulatory process that turns on photosynthesis in plants at daybreak likely developed on Earth in ancient microbes 2.5 billion years ago, long before oxygen became available.