LED

03/10/2014 - 10:18

A team of MIT researchers has used a novel material that’s just a few atoms thick to create devices that can harness or emit light. This proof-of-concept could lead to ultrathin, lightweight, and flexible photovoltaic cells, light emitting diodes (LEDs), and other optoelectronic devices, they say.

 

04/24/2013 - 11:33

Researchers from North Carolina State University have solved a long-standing materials science problem, making it possible to create new semiconductor devices using zinc oxide (ZnO) – including efficient ultraviolet (UV) lasers and LED devices for use in sensors and drinking water treatment, as well as new ferromagnetic devices.

 

07/30/2012 - 06:55

Plastic electronics hold the promise of cheap, mass-produced devices. But plastic semiconductors have an important flaw: the electronic current is influenced by “charge traps” in the material. These traps, which have a negative impact on plastic light-emitting diodes and solar cells, are poorly understood.

02/24/2012 - 15:12

A multinational team of scientists has developed a process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range. The work, reported this week in the online Nature Communications, is a step toward biomedical devices with active components made from nanostructured systems.

02/22/2012 - 10:28

Nanowires — microscopic fibers that can be “grown” in the lab — are a hot research topic today, with a variety of potential applications including light-emitting diodes (LEDs) and sensors. Now, a team of MIT researchers has found a way of precisely controlling the width and composition of these tiny strands as they grow, making it possible to grow complex structures that are optimally designed for particular applications.

12/23/2011 - 16:48

The team developed a method to chemically etch patterned arrays in the semiconductor gallium arsenide, used in solar cells, lasers, light emitting diodes (LEDs), field effect transistors (FETs), capacitors and sensors. Led by electrical and computer engineering professor Xiuling Li, the researchers describe their technique in the journal Nano Letters.