brain hemispheres

10/04/2013 - 11:18

The left and right hemispheres of Albert Einstein's brain were unusually well connected to each other and may have contributed to his brilliance, according to a new study conducted in part by Florida State University evolutionary anthropologist Dean Falk.

 

02/08/2012 - 15:41

As they try to find the best reward among options, some people explore based on how uncertain they are about the outcome of the options.  Those who employ that thought process, unlike people who use other strategies, uniquely harness the computational power of the rostrolateral prefrontal cortex, a new study finds. 

01/03/2012 - 14:53

Publishing in the European Journal of Neuroscience, renowned bat researcher Jagmeet Kanwal, PhD, associate professor in the department of neurology at Georgetown University Medical Center, reports on how and in which hemisphere of the brain, bats process incoming signals that allow them to orient and navigate while at the same time, make sense of what other bats are trying to tell them.

11/21/2011 - 09:23

The structure of the corpus callosum, a thick band of nerve fibres that connects the two halves of the brain with each other and in this way enables the rapid exchange of information between the left and right hemispheres, plays an important role in the regaining of motor skills following a stroke. A study currently published in the journal Human Brain Mapping has shown that in stroke patients with particularly severely impaired hand movement, this communication channel between the two brain hemispheres in particular was badly damaged.

10/19/2011 - 11:22

Like a bridge that spans a river to connect two major metropolises, the corpus callosum is the main conduit for information flowing between the left and right hemispheres of our brains. Now, neuroscientists at the California Institute of Technology (Caltech) have found that people who are born without that link—a condition called agenesis of the corpus callosum, or AgCC—still show remarkably normal communication across the gap between the two halves of their brains. 

09/02/2011 - 06:17
Max Planck researchers show how communication between brain hemispheres determines individual’s subjective experience.  Researchers from the Max Planck Institute for Brain Research in Frankfurt investigated whether differences between individuals in the anatomy of the corpus callosum would predict how observers perceive a visual stimulus for which the left and right hemisphere need to cooperate. As their results indicate, the characteristics of specific callosal fibre tracts are related to the subjective experience of individuals.