catalyst

04/09/2013 - 09:11

Nanoelectronics has taken another step forward. An international team including researchers from the Max Planck Institute of Microstructure Physics in Halle has discovered an effect which can be used to produce silicon nanowires with particularly attractive electrical and morphological properties. These nanowires are grown in an elegant way with aluminium as the catalyst.

 

11/16/2012 - 09:19

For the past several years, Min Guo, an assistant professor at The Scripps Research Institute (TSRI), has focused on the intricate actions of an ancient family of catalytic enzymes that play a key role in translation, the process of producing proteins.

10/17/2012 - 10:10

Platinum works well as a catalyst in hydrogen fuel cells, but it has at least two drawbacks: It is expensive, and it degrades over time. Brown chemists have engineered a cheaper and more durable catalyst using graphene, cobalt, and cobalt-oxide — the best nonplatinum catalyst yet. Their report appears in the journal Angewandte Chemie International Edition.

10/09/2012 - 14:33

Researchers based at Princeton University reported in the journal Science that they created a synthetic enzyme that acts as a catalyst to replace certain hydrogen atoms of a drug molecule with fluorine atoms. This swap stabilizes the molecule and makes it resistant to the liver enzymes that can inactivate a drug or create toxic byproducts.

09/04/2012 - 13:58

Scientists and engineers around the world are working to find a way to power the planet using solar-powered fuel cells. Such green systems would split water during daylight hours, generating hydrogen (H2) that could then be stored and used later to produce water and electricity. But robust catalysts are needed to drive the water-splitting reaction.

06/20/2012 - 06:34

A team of scientists from the Max Planck Institute for Chemical Physics of Solids in Dresden and the Fritz Haber Institute of the Max Planck Society in Berlin have now developed a catalyst using iron and aluminium that works just as well as the conventional palladium catalyst, but costs much less. To identify the iron-aluminium alternative, the scientists first systematically ascertained what properties the material would need. They plan to use this same procedure to search for catalysts for other reactions in future.