corpus callosum

03/25/2013 - 11:30

 Infants at 7 months of age who go on to develop autism are slower to reorient their gaze and attention from one object to another when compared to 7-month-olds who do not develop autism, and this behavioral pattern is in part explained by atypical brain circuits.


03/04/2013 - 13:54

A group of researchers at UC San Francisco and UC Berkeley have mapped the three-dimensional global connections within the brains of seven adults who have genetic malformations that leave them without the corpus callosum, which connects the left and right sides of the brain.


11/21/2011 - 09:23

The structure of the corpus callosum, a thick band of nerve fibres that connects the two halves of the brain with each other and in this way enables the rapid exchange of information between the left and right hemispheres, plays an important role in the regaining of motor skills following a stroke. A study currently published in the journal Human Brain Mapping has shown that in stroke patients with particularly severely impaired hand movement, this communication channel between the two brain hemispheres in particular was badly damaged.

10/19/2011 - 11:22

Like a bridge that spans a river to connect two major metropolises, the corpus callosum is the main conduit for information flowing between the left and right hemispheres of our brains. Now, neuroscientists at the California Institute of Technology (Caltech) have found that people who are born without that link—a condition called agenesis of the corpus callosum, or AgCC—still show remarkably normal communication across the gap between the two halves of their brains. 

09/02/2011 - 06:17
Max Planck researchers show how communication between brain hemispheres determines individual’s subjective experience.  Researchers from the Max Planck Institute for Brain Research in Frankfurt investigated whether differences between individuals in the anatomy of the corpus callosum would predict how observers perceive a visual stimulus for which the left and right hemisphere need to cooperate. As their results indicate, the characteristics of specific callosal fibre tracts are related to the subjective experience of individuals.