04/03/2014 - 11:58

The electrochemical reactions inside the porous electrodes of batteries and fuel cells have been described by theorists, but never measured directly. Now, a team at MIT has figured out a way to measure the fundamental charge transfer rate — finding some significant surprises.


11/13/2013 - 12:13

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable materials for the batteries’ electrodes and improving the number of charging-discharging cycles the batteries can withstand.


06/11/2013 - 09:32

Researchers at Sandia National Laboratories have confirmed the particle-by-particle mechanism by which lithium ions move in and out of electrodes made of lithium iron phosphate (LiFePO4, or LFP), findings that could lead to better performance in lithium-ion batteries in electric vehicles, medical equipment and aircraft.


04/08/2013 - 10:41

ETH-Zurich researchers use x-ray tomography to screen lithium ion battery electrodes and can reconstruct the microstructure in high resolution. This helps to understand the discharging and charging process better and develop optimised electrodes.


08/16/2012 - 07:18

Quantum computers promise to reach computation speeds far beyond that of today’s computers. As they would use quantum effects, however, they would also be susceptible to external interferences. Information flow into and out of the system is a critical point. Researchers from KIT with partners from Grenoble and Strasbourg have now read out the quantum state of an atom directly by using electrodes. In the Nature journal, it is reported about the stable interface between classical and quantum world.

11/21/2011 - 17:24
As the market for liquid crystal displays and other electronics continues to drive up the price of indium — the material used to make the indium tin oxide (ITO) transparent electrodes in these devices — scientists have been searching for a less costly and more dynamic alternative, particularly for use in future flexible electronics.