matter

07/07/2014 - 11:02

For the last century, the concept of crystals has been a mainstay of solid-state physics. Crystals are paragons of order; crystalline materials are defined by the repeating patterns their constituent atoms and molecules make. Now physicists at the University of Pennsylvania and the University of Chicago have evidence that a new concept should undergird our understanding of most materials: the anticrystal, a theoretical solid that is completely disordered.

 

05/18/2014 - 12:00

The new research, published in Nature Photonics, shows for the first time how Breit and Wheeler's theory could be proven in practice. This 'photon-photon collider', which would convert light directly into matter using technology that is already available, would be a new type of high-energy physics experiment. This experiment would recreate a process that was important in the first 100 seconds of the universe and that is also seen in gamma ray bursts, which are the biggest explosions in the universe and one of physics' greatest unsolved mysteries.

 

01/10/2014 - 12:54

A researcher at the University of Cincinnati is leveraging the compute and storage resources of the Ohio Supercomputer Center (OSC) to simulate the behavior of elusive cosmic particles in an experiment that may provide answers to the most fundamental questions in our understanding of the evolution of the universe.

 

08/06/2013 - 16:41

There may be more kinds of stuff than we thought. A team of researchers has reported possible evidence for a new category of solids, things that are neither pure glasses, crystals, nor even exotic quasicrystals. Something else.

 

12/30/2012 - 20:50

A collaboration with major participation by physicists at the University of Wisconsin-Madison has made a precise measurement of elusive, nearly massless particles, and obtained a crucial hint as to why the universe is dominated by matter, not by its close relative, anti-matter.

06/08/2012 - 09:10

By studying two active black holes researchers at the SRON Netherlands Institute for Space Research have now gathered evidence that suggests that each black hole can change between two different regimes, like changing the gears of an engine. The team's findings will be published in two papers in the journal Monthly Notices of the Royal Astronomical Society.