sensors

05/05/2014 - 10:45

Terahertz imaging, which is already familiar from airport security checkpoints, has a number of other promising applications — from explosives detection to collision avoidance in cars. Like sonar or radar, terahertz imaging produces an image by comparing measurements across an array of sensors. Those arrays have to be very dense, since the distance between sensors is proportional to wavelength.

 

12/09/2013 - 11:59

With one stomp of his foot, Zhong Lin Wang illuminates a thousand LED bulbs – with no batteries or power cord. The current comes from essentially the same source as that tiny spark that jumps from a fingertip to a doorknob when you walk across carpet on a cold, dry day. Wang and his research team have learned to harvest this power and put it to work.

 

10/10/2013 - 09:20

If a pair of trousers is too long, it is cut shorter. A board that does not fit into a bookcase is sawed to the right length. People often customize the size and shape of materials like textiles and wood without turning to specialists like tailors or carpenters. In the future this should be possible with electronics, according to the vision of computer scientists from Saarbrücken. Together with researchers from the MIT Media Lab, they developed a printable multi-touch sensor whose shape and size everybody can alter. A new circuit layout makes it robust against cuts, damage, and removed areas. Today the researchers are presenting their work at the conference “User Interface and Technology” (UIST) in St. Andrews, Scotland.

 

09/11/2013 - 10:06

Researchers from North Carolina State University used airbrushing techniques to grow vertically aligned carbon nanofibers on several different metal substrates, opening the door for incorporating these nanofibers into gene delivery devices, sensors, batteries and other technologies.

 

04/24/2013 - 11:33

Researchers from North Carolina State University have solved a long-standing materials science problem, making it possible to create new semiconductor devices using zinc oxide (ZnO) – including efficient ultraviolet (UV) lasers and LED devices for use in sensors and drinking water treatment, as well as new ferromagnetic devices.

 

04/11/2013 - 10:37

The application of light for information processing opens up a multitude of possibilities. However, to be able to adequately use photons in circuits and sensors, materials need to have particular optical and mechanical properties. Researchers at the Karlsruhe Institute of Technology (KIT) have now for the first time used polycrystalline diamond to manufacture optical circuits and have published their results online in Nature Communications.