07/29/2013 - 13:32

Broken bones and joint replacements may someday heal faster, thanks to an unusual coating for medical implants under development at The Ohio State University. Researchers here have found that bone cells grow and reproduce faster on a textured surface than they do on a smooth one—and they grow best when they can cling to a microscopic shag carpet made of tiny metal oxide wires.


04/09/2013 - 09:11

Nanoelectronics has taken another step forward. An international team including researchers from the Max Planck Institute of Microstructure Physics in Halle has discovered an effect which can be used to produce silicon nanowires with particularly attractive electrical and morphological properties. These nanowires are grown in an elegant way with aluminium as the catalyst.


04/01/2013 - 10:30

New research carried out at MIT and elsewhere has demonstrated for the first time that when inserted into a pool of liquid, nanowires — wires that are only hundreds of nanometers (billionths of a meter) across — naturally draw the liquid upward in a thin film that coats the surface of the wire. The finding could have applications in microfluidic devices, biomedical research and inkjet printers.


02/19/2013 - 09:34

Researchers at North Carolina State University have developed a new type of nanoscale structure that resembles a “nano-shish-kebab,” consisting of multiple two-dimensional nanosheets that appear to be impaled upon a one-dimensional nanowire. However, the nanowire and nanosheets are actually a single, three-dimensional structure consisting of a seamless series of germanium sulfide (GeS) crystals. The structure holds promise for use in the creation of new, three-dimensional (3-D) technologies.


09/10/2012 - 10:35

Norwegian University of Science and Technology researchers have patented and are commercializing GaAs nanowires grown on graphene, a hybrid material with competitive properties. Semiconductors grown on graphene are expected to become the basis for new types of device systems, and could fundamentally change the semiconductor industry. The technology underpinning their approach has recently been described in a publication in the American research journal Nano Letters.

04/27/2012 - 13:42

Engineers at Stanford have found a novel method for “decorating” nanowires with chains of tiny particles to increase their electrical and catalytic performance. The new technique is simpler, faster and provides greater control than earlier methods and could lead to better batteries, solar cells and catalysts.