gene therapy

12/27/2013 - 14:07

Stem cell-based gene therapy holds promise for the treatment of devastating genetic skin diseases, but the long-term clinical outcomes of this approach have been unclear. In a study online December 26th in the ISSCR's journal Stem Cell Reports, published by Cell Press, researchers evaluated a patient with a genetic skin disorder known as epidermolysis bullosa (EB) nearly seven years after he had undergone a gene therapy procedure as part of a clinical trial. The study revealed that a small number of skin stem cells transplanted into the patient's legs were sufficient to restore normal skin function, without causing any adverse side effects.

 

12/24/2013 - 09:54

Working in mice, researchers at Washington University School of Medicine in St. Louis report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells.

 

12/19/2013 - 08:29

A new study in mice suggests that gene therapy one day may be a viable treatment for Alport syndrome, an inherited disease that leads to kidney failure. The research, by scientists at Washington University School of Medicine in St. Louis, is available online in the Journal of the American Society of Nephrology.

 

05/08/2013 - 10:06

Scientists have discovered that fat cells in the knee secrete a protein linked to arthritis, a finding that paves the way for new gene therapies that could offer relief and mobility to millions worldwide.

 

03/23/2013 - 11:03

The April issue of Translational Research examines the progress and outlook of gene therapy research, with a specific focus on the clinical applicability of gene therapy today. Research articles included in the special issue highlight current studies that, after decades of trial and error, may provide evidence for a clear path of treatment and cure for many diseases. There are more than 1,800 genetic disorders known in humans, and only a small fraction of these can be treated and even fewer cured. Some of these disorders are exceedingly rare, others more common. The approach of gene therapy however may be applicable to all.

01/15/2013 - 15:11

A novel therapeutic approach called exon skipping involves bypassing a disease-causing mutation in a gene to restore normal gene expression and protein production. Two innovative examples of this strategy used to correct gene defects associated with muscular dystrophy are described in articles in Human Gene Therapy.