iron

04/23/2014 - 17:23

Studies have shown that impulsive Solar Energetic Particle (SEP) events emit Fe ions with QFe < 14 at the lowest energies (E ≤ 0.1 MeV/nuc) that are consistent with typical corona source material (DiFabio et al., ApJ, 687, 623, 2008). However, the occasional observation of Fe with QFe > 16 in solar wind associated with active regions (Lepri et al., JGR, 106, 29231, 2001) led to a search for acceleration of high charge state Fe in all SEP events observed with ACE SEPICA.

 

01/22/2014 - 18:10

Decreases in the Fe/O ratio during solar energetic particle (SEP) event onsets are often observed and attributed to a variety of processes such as the acceleration mechanism, shock geometry, mixtures of particle populations, and interplanetary transport.

 

12/17/2013 - 12:26

A UCLA research team has found no evidence of an association between iron levels in the body and the risk of atherosclerosis, the hardening and narrowing of the arteries that leads to cardiovascular disease, the No. 1 killer in the U.S.

 

09/09/2013 - 21:58

A protein, ferritin, protects kidneys against a damaging after-effect of injury, heart failure or hardened arteries by controlling levels of iron, according to a study published today by researchers at the University of Alabama at Birmingham in the Journal of Clinical Investigation.

 

08/21/2013 - 12:09

Alzheimer's disease has proven to be a difficult enemy to defeat. After all, aging is the No. 1 risk factor for the disorder, and there's no stopping that. Most researchers believe the disease is caused by one of two proteins, one called tau, the other beta-amyloid. As we age, most scientists say, these proteins either disrupt signaling between neurons or simply kill them. Now, a new UCLA study suggests a third possible cause: iron accumulation.

 

05/20/2013 - 14:34

Meeting the demand for more data storage in smaller volumes means using materials made up of ever-smaller magnets, or nanomagnets. One promising material for a potential new generation of recording media is an alloy of iron and platinum with an ordered crystal structure. Researchers led by Professor Kai Liu and graduate student Dustin Gilbert at the University of California, Davis, have now found a convenient way to make these alloys and tailor their properties.